Fighter aircraft

A fighter aircraft is a military aircraft designed primarily for air-to-air combat with other aircraft,[1] as opposed to a bomber, which is designed primarily to attack ground targets. The hallmarks of a fighter are its speed, maneuverability, and small size relative to contemporary aircraft types.

Many fighters have secondary ground-attack capabilities, and some are dual-roled as fighter-bombers. It is not unusual for aircraft that do not fulfill the standard definition to be labelled or described as fighters. This may be for political or national security reasons, for advertising purposes or other reasons.[2]

Fighters are the means by which armed forces gain air superiority over their opponents in battle. Since World War I, achieving and maintaining air superiority has been essential for victory in conventional warfare.[3] Alternatively guerrilla warfare attempts to find victory without air superiority but may only do so at a great cost in lives. The initial purchase price represents only small part of the total cost so that maintaining a viable fighter fleet consumes a substantial proportion of the defense budgets of modern armed forces.[4]

Contents

Terminology

The word "fighter" did not become the official English term for such aircraft until after World War I. In Great Britain's Royal Flying Corps and Royal Air Force these aircraft were referred to as "scouts" into the early 1920s. The U.S. Army called their fighters "pursuit" aircraft from 1916 until the late 1940s. The French chasseur and German jagdflugzeuge are terms that continue to be used for fighters, and mean "hunter" and "hunting aircraft" respectively. This lead has been followed in most languages except Russian where the fighter is an "истребитель" (pronounced "istrebitel"), meaning "exterminator".

As a part of military nomenclature, a letter is often assigned to various types of aircraft to indicate their use, along with a number to indicate the specific aircraft. The letters used to designate a fighter in various countries differ - in the English speaking world, "F" is now used to indicate a fighter (e.g. F-35) or Spitfire F.22 though when the pursuit designation was used in the US, they were "P" types (such as with the P-40). In Russia "I" was used (I-16), while the French continue to use "C" (Nieuport 17 C.1).

Although the term "fighter" specifies aircraft designed to shoot down other aircraft, such designs are often also useful as multirole fighter-bombers, strike fighters, and sometimes lighter, fighter-sized tactical ground-attack aircraft. This has always been the case, for instance the Sopwith Camel and other "fighting scouts" of World War I performed a great deal of ground attack work. In World War II the USAAF and RAF would often favor fighters over dedicated light bombers or dive bombers, and types such as the P-47 Thunderbolt and Hawker Hurricane which were found to be no longer competitive as fighters were relegated to ground attack. A number of aircraft such as the F-111 and F-117 had no fighter capability despite carrying the designation but did so for political reasons - the F-111 was originally intended to fulfill a fighter role with the Navy but this variant was cancelled, while the F-117 was thus designated for national security reasons. This blurring follows the use of fighters from their earliest days for "attack" or "strike" operations against enemy troops, field positions, vehicles, and facilities by means of strafing or dropping small bombs and incendiaries. Versatile multirole fighter-bombers such as the F/A-18 Hornet are a less expensive option than having a range of specialized aircraft types.

Some of the most expensive fighters such as the F-14 Tomcat, F-22 Raptor and F-15 Eagle were employed as all-weather interceptors as well as air superiority fighter aircraft, while commonly developing air-to-ground roles late in their careers. An interceptor is generally an aircraft intended to target (or intercept) bombers and so often trades maneuverability for climb rate.

Development overview

Fighters were developed in World War I to deny enemy aircraft and dirigibles the ability to gather information by reconnaissance. Early fighters were very small and lightly armed by later standards, and most were biplanes built with a wooden frame, covered with fabric, and limited to about 100 mph. As control of the airspace over armies became increasingly important all of the major powers developed fighters to support their military operations. Between the wars, wood was largely replaced by steel tubing, which became aluminium tubing, and finally aluminium stressed skin structures began to predominate.

By World War II, most fighters were all-metal monoplanes armed with batteries of machine guns or cannons and some were capable of speeds approaching 400 mph. Most fighters up to this point had one engine but a number of twin engined fighters were built, however they were found to be defenseless against single engine fighters and were relegated to other tasks, some becoming night fighters, fitted with very primitive radar sets.

By the end of the war, turbojet engines were replacing piston engines as the means of propulsion, further increasing their speed. Since the weight of the engine was so much less than on piston engined fighters, having two engines was no longer a handicap and one or two were used, depending on requirements. This in turn required the development of ejection seats so the pilot could escape and G-suits to counter the much greater forces being applied to the pilot during maneuvers.

In the 1950s radar was being fitted to day fighters since the pilot could no longer see far enough ahead to prepare for any opposition, and since then the capabilities have grown enormously and are now the primary method of target acquisition. Wings were made thinner and swept back to reduce trans-sonic drag which requiring new manufacturing methods to obtain sufficient strength. Skins were no longer sheet metal rivetted to a structure, but milled from large slabs of alloy. The sound barrier was broken, and after a few false starts due to the changes in control required, speeds quickly reached Mach 2, but this has proven to be the limit at which the human body can tolerate even with the assistance of G-suits - any faster and the aircraft is unable to maneuver to avoid attack.

Air-to-air missiles largely replaced guns and rockets in the early 1960s since both were believed to be unusable at the speeds being attained, however the Vietnam War showed that guns still had a role to play and most fighters built since then are fitted with cannon (typically between 20 and 30 mm in caliber) as an adjunct to missiles. Most modern combat aircraft can carry a pair of basic air-to-air missiles and some of the larger fighters such as the Sukhoi Su-27 can carry as many as 12.

In the 70's, turbofans replaced turbojets, improving fuel economy sufficiently that the last piston engined support aircraft could be replaced with jets, and making multi-role combat aircraft possible. Honeycomb structures began to replace milled structures and the first composite components began to be used on components subjected to little stress.

With the steady improvements in computers, defensive systems have become increasingly efficient and to counter this, stealth technologies have been pursued by the United States, Russia and China. The first step in this was to find ways to reduce the aircraft's reflectivity to radar waves by burying the engines, eliminating sharp corners and diverting any reflections away from the radar sets of opposing forces. Various materials were found to absorb the energy from Radar waves, and were incorporated into special finishes which have since found widespread application. Composite structures have become widespread, and include major structural components, reducing the steadily increasing weight - most modern fighters are larger and heavier than World War 2 medium bombers.

Piston engine fighters

World War I

The word "fighter" was first used to describe a two-seater aircraft with sufficient lift to carry a machine gun and its operator as well as the pilot. Some of the first such "fighters" belonged to the "gunbus" series of experimental gun carriers of the British Vickers company which culminated in the Vickers F.B.5 Gunbus of 1914. The main drawback of this type of aircraft was its lack of speed. It was quickly realized that an aircraft intended to destroy its kind in the air needed at least to be fast enough to catch its quarry.

Another type of military aircraft was to form the basis for an effective "fighter" in the modern sense of the word. It was based on the small fast aircraft developed before the war for such air races as the Gordon Bennett Cup and Schneider Trophy. The military scout airplane was not expected to be able to carry serious armament, but rather to rely on its speed to be able to reach the location it was required to "scout" or reconnoiter and then return quickly to report - essentially an aerial horse. British scout aircraft in this sense included the Sopwith Tabloid and Bristol Scout; French equivalents included the Morane-Saulnier N.

Soon after the commencement of the war, pilots armed themselves with pistols, carbines, grenades, and an assortment of improvised weapons. Many of these proved ineffective as the pilot had to fly his airplane while attempting to aim a handheld weapon and make a difficult deflection shot. The first step in finding a real solution was to mount the weapon on the aircraft, but the propeller remained a problem since the best direction to shoot is straight ahead. Numerous solutions were tried. A second crew member behind the pilot could aim and fire a swivel-mounted machine gun at enemy airplanes however, this limited the area of coverage chiefly to the rear hemisphere, and effective coordination of the pilot's maneuvering with the gunner's aiming was difficult. This option was chiefly employed as a defensive measure on two-seater reconnaissance aircraft from 1915 on. Both the SPAD A.2 and the Royal Aircraft Factory B.E.9 added a second crewman ahead of the engine in a pod but this was both hazardous to the second crewman and limited performance. The Sopwith L.R.T.Tr. similarly added a pod on the top wing with no better luck. An alternative was to build a "pusher" scout such as the Airco DH.2, with the propeller mounted behind the pilot. The main drawback was that the high drag of a pusher type's tail structure made it slower than a similar "tractor" aircraft.

A better solution for a single seat scout was to mount the machine gun (rifles and pistols having been dispensed with) to fire forwards but outside the propeller arc. Wing guns were tried but the unreliable weapons available required frequent clearing of jammed rounds and misfires and remained impractical until after the war. Mounting the machine gun over the top wing worked well and was used long after the ideal solution was found. The Nieuport 11 of 1916 and Royal Aircraft Factory S.E.5 of 1918 both used this system with considerable success, however this placement made aiming difficult and the location made it difficult for a pilot to both maneuver and have access to the gun's breech. The British Foster mounting was specifically designed for this kind of application, fitted with the Lewis Machine gun, which due to its design was unsuitable for synchronizing.

The need to arm a tractor scout with a forward-firing gun whose bullets passed through the propeller arc was evident even before the outbreak of war and inventors in both France and Germany devised mechanisms that could time the firing of the individual rounds to avoid hitting the propeller blades. Franz Schneider, a Swiss engineer, had patented such a device in Germany in 1913, but his original work was not followed up. French aircraft designer Raymond Saulnier patented a practical device in April 1914, but trials were unsuccessful because of the propensity of the machine gun employed to hang fire due to unreliable ammunition.

In December 1914, French aviator Roland Garros asked Saulnier to install his synchronization gear on Garros' Morane-Saulnier Type L. Unfortunately the gas-operated Hotchkiss machine gun he was provided had an erratic rate of fire and it was impossible to synchronize it with a spinning propeller. As an interim measure, the propeller blades were armored and fitted with metal wedges to protect the pilot from ricochets. Garros' modified monoplane was first flown in March 1915 and he began combat operations soon thereafter. Garros scored three victories in three weeks before he himself was downed on 18 April and his airplane, along with its synchronization gear and propeller was captured by the Germans.

Meanwhile, the synchronization gear (called the Stangensteuerung in German, for "pushrod control system") devised by the engineers of Anthony Fokker's firm was the first system to see production contracts, and would make the Fokker Eindecker monoplane a feared name over the Western Front, despite its being an adaptation of an obsolete pre-war French Morane-Saulnier racing airplane, with a mediocre performance and poor flight characteristics. The first victory for the Eindecker came on 1 July 1915, when Leutnant Kurt Wintgens, flying with the Feldflieger Abteilung 6 unit on the Western Front, forced down a Morane-Saulnier Type L two-seat "parasol" monoplane just east of Luneville. Wintgens' aircraft, one of the five Fokker M.5K/MG production prototype examples of the Eindecker, was armed with a synchronized, air-cooled aviation version of the Parabellum MG14 machine gun.

The success of the Eindecker kicked off a competitive cycle of improvement among the combatants, building ever more capable single-seat fighters. The Albatros D.I and Sopwith Pup of 1916 set the classic pattern followed by fighters for about twenty years. Most were biplanes and only rarely monoplanes or triplanes. The strong box structure of the biplane wing provided a rigid wing that allowed the accurate lateral control essential for dogfighting. They had a single operator, who flew the aircraft and also controlled its armament. They were armed with one or two Maxim or Vickers machine guns which were easier to synchronize than other types, firing through the propeller arc. Gun breeches were directly in front of the pilot with obvious implications in case of accidents, but jams could be cleared in flight, while aiming was simplified.

The use of metal aircraft structures was pioneered before World War I by Breguet but would find its biggest proponent with Anthony Fokker who used chrome-molybdenum steel tubing for the fuselage structure of all his fighter designs, while the innovative German engineer Hugo Junkers developed two all-metal, single-seat fighter monoplane designs with cantilever wings: the strictly experimental Junkers J 2 private-venture aircraft, made with steel, and some forty examples of the Junkers D.I, made with corrugated duralumin, all based on his experience in creating the pioneering Junkers J 1 all-metal airframe technology demonstration aircraft of late 1915. While Fokker would pursue steel tube fuselages with wooden wings until the late 1930s, and Junkers would focus on corrugated sheet metal, Dornier was the first to build a fighter (The Dornier D.I) made with pre-stressed sheet aluminium and having cantelevered wings, a form that would replace all others in the 1930s.

As collective combat experience grew, the more successful pilots such as Oswald Boelcke, Max Immelmann, and Edward Mannock developed innovative tactical formations and maneuvers to enhance their air units' combat effectiveness.

Allied and – before 1918 – German pilots of World War I were not equipped with parachutes, so in-flight fires or structural failure were often fatal. Parachutes were well-developed by 1918 having previously been used by balloonists, and were adopted by the German flying services during the course of that year (the famous "Red Baron" was wearing one when he was killed), but the allied command continued to oppose their use on various grounds.[5]

In April 1917 during a brief period of German aerial supremacy, the average life expectancy of a British pilot on the Western Front was claimed by a grandstanding Member of Parliament (upset at the lack of orders his own aircraft manufacturing firm was receiving) to be 93 flying hours, or about three weeks of active service.[6][7] More than 50,000 airmen from both sides died during the war.[8]

Inter-war period (1919–38)

Fighter development slowed between the wars, especially in the United States and the United Kingdom, where budgets were deeply slashed. In France, Italy and Russia, where budgets were allowed major development, both monoplanes and all metal structures were common by the end of the 1920s however those countries overspent themselves and were finally overtaken in the early '30s by those powers that hadn't been spending heavily before, namely the British, the Americans and the Germans.

Given limited defense budgets, air forces tended to be conservative in their aircraft purchases, and biplanes remained popular with pilots because of their agility, and remained in service long after they had ceased to be competitive. Designs such as the Gloster Gladiator, Fiat CR.42, and Polikarpov I-15 were common even in the late 1930s, and many were still in service as late as 1942. Up until the mid-1930s, the majority of fighters in the US, the UK, Italy and Russia remained fabric-covered biplanes.

Fighter armament eventually began to be mounted inside the wings, outside the arc of the propeller, though most designs retained two synchronized machine-guns directly ahead of the pilot where they were more accurate (that being the strongest part of the structure). Rifle-caliber .30 and .303 (7.62 mm) caliber guns remained the norm with larger weapons either being too heavy and cumbersome or deemed unnecessary against such lightly built aircraft. It was not considered unreasonable to use World War I-style armament to counter enemy fighter as there was insufficient air to air combat during most of the period to disprove this notion.

The rotary engine, popular during World War I, quickly disappeared, having reached its peak as rotational forces prevented more fuel and air from being delivered to the cylinders, which limited horsepower. They were replaced chiefly by the stationary radial engine though major advances continued to be made with inline engines which gained ground with several exceptional engines, including the 1,145 cu in (18.76 l) V-12 Curtiss D-12. Aircraft engines increased in power several-fold over the period, going from a typical 180 hp (130 kW) in the 1918 Fokker D.VII to 900 hp (670 kW) in the 1938 Curtiss P-36. The debate between the sleek in-line engines versus the more reliable radial models continued, with naval air forces preferring the radial engines, and land-based forces often choosing in-line units. Radial designs did not require a separate (and vulnerable) cooling system, but had increased drag. In-line engines often had a better power-to-weight ratio, but there were radial engines that kept working even after having suffered significant battle damage.

Some air forces experimented with "heavy fighters" (called "destroyers" by the Germans). These were larger, usually twin-engined aircraft, sometimes adaptations of light or medium bomber types. Such designs typically had greater internal fuel capacity (thus longer range) and heavier armament than their single-engine counterparts. In combat, they proved vulnerable to more agile single-engine fighters.

The primary driver of fighter innovation, right up to the period of rapid rearmament in the late thirties, was not military budget, but civilian aircraft races. Aircraft designed for these races introduced innovations like streamlining and more powerful engines that would find their way into the fighters of World War II. The most significant of these was the Schneider Cup races, where competition grew so fierce, only national governments could afford to enter.

At the very end of the inter-war period in Europe came the Spanish Civil War. This was just the opportunity the German Luftwaffe, Italian Regia Aeronautica, and the Soviet Union's Red Air Force needed to test their latest aircraft. Each party sent numerous aircraft types to support their sides in the conflict. In the dogfights over Spain, the latest Messerschmitt fighters (Bf 109) did well, as did the Soviet Polikarpov I-16. The German design had considerably more room for development however and the lessons learned led to greatly improved models in World War II. The Russians, whose side lost, failed to keep pace and I-16s were outfought by the improved Bf 109s in World War II, and despite newer models coming into service remained the most common Soviet front-line fighter into 1942. For their part, the Italians developed several monoplanes such as the Fiat G.50, but being short on funds, were forced to continue operating obsolete Fiat CR.42 biplanes. From the early 1930s the Japanese had been at war in China against the Nationalist Chinese as well as the Russians, and used the experience to improve both training and aircraft, replacing biplanes with modern cantilever monoplanes and creating a cadre of exceptional pilots for use in the Pacific War. In the United Kingdom, at the behest of Neville Chamberlain, (more famous for his 'peace in our time' speech) the entire British aviation industry was retooled, allowing it to change quickly from fabric covered metal framed biplanes to cantilever stressed skin monoplanes in time for the war with Germany. Without his work in the early '30s, Churchill would not have had the tools to take on the Germans. The period of improving the same biplane design over and over was now coming to an end, and the Hawker Hurricane and Supermarine Spitfire finally started to supplant the Gloster Gladiator and Hawker Fury biplanes but many of the former remained in front-line service well past the start of World War II. While not a combatant themselves in Spain, they absorbed many of the lessons learned in time to use them.

The Spanish Civil War also provided an opportunity for updating fighter tactics. One of the innovations to result from the aerial warfare experience this conflict provided was the development of the "finger-four" formation by the German pilot Werner Mölders. Each fighter squadron (German: Staffel) was divided into several flights (Schwärme) of four aircraft. Each Schwarm was divided into two Rotten which was a pair of aircraft. Each Rotte was composed of a leader and a wingman. This flexible formation allowed the pilots to maintain greater situational awareness, and the two Rotten could split up at any time and attack on their own. The finger-four would become widely adopted as the fundamental tactical formation over the course of World War

World War II

Fighter aircraft played a pivotal role in the Second World War as the primary weapon for establishing and maintaining air superiority. German Field Marshal Erwin Rommel noted the effect of airpower: "Anyone who has to fight, even with the most modern weapons, against an enemy in complete command of the air, fights like a savage against modern European troops, under the same handicaps and with the same chances of success." Fighters established air superiority in their roles in fighter-to-fighter aerial combat and as bomber interceptors. Fighters also served as ground-attack aircraft, and many fighters performed effectively in multiple roles.

The approach of different belligerents to fighter design varied widely, with the Japanese and Italians favoring lightly armed and armored but highly maneuverable designs such as the Japanese Nakajima Ki-27, Nakajima Ki-43 and Mitsubishi A6M Zero and Italy's Fiat G.50 and Macchi MC.200. In contrast, designers in Great Britain, Germany, the Soviet Union, and the United States believed that due to the increasing speed of fighter aircraft, the twisting and maneuvering typical of World War I dogfights would create g-forces unbearable to pilots. These nations' fighters instead were optimized for speed and firepower to allow pilots to quickly engage and dispatch opposing aircraft. While light, highly maneuverable aircraft did have some advantages in combat, those could usually be overcome by sound tactical doctrine, and the design approach of the Italians and Japanese made their planes ill-suited as interceptors or attack aircraft.

European theater

During the invasion of Poland and the Battle of France, Luftwaffe fighters - primarily the Messerschmitt Bf 109 - held air superiority, and the Luftwaffe played a major role in German victories in these campaigns. During the Battle of Britain, however, British Hurricanes and Spitfires proved roughly equal to Luftwaffe fighters. Additionally Britain's use of radar and the advantages of fighting above Britain's home territory allowed the RAF to deny Germany air superiority, saving the British Isles from German invasion and dealing the Axis their first major defeat of the Second World War.

On the Eastern Front, Soviet fighter forces were overwhelmed during the opening phases of Operation Barbarossa. This was a result of the the tactical surprise at the outset of the campaign, the leadership vacuum within the Soviet military left by the Great Purge, and the general inferiority of Soviet designs at the time, such as the obsolescent the I-15 biplane and the I-16. More modern Soviet designs including the MiG-3, LaGG-3 and Yak-1 had not yet arrived in numbers and in any case were still inferior to the Messerschmitt Bf 109. As a result, during the early months of these campaigns, Axis air forces destroyed large numbers of Red Air Force aircraft on the ground and in one-sided dogfights.

In the later stages on the Eastern Front, Soviet training and leadership improved, as did their equipment. Late war Soviet designs such as theYak-3 and La-7 had performance comparable to the German Bf-109 and Focke-Wulf Fw 190. Also, significant numbers of British, and later U.S., fighter aircraft were also supplied to aid the Soviet war effort as part of Lend-Lease, with the Bell P-39 Airacobra proving particularly effective in the lower-altitude combat typical of the Eastern Front. The Soviets increasingly were able to challenge the Luftwaffe, and while the Luftwaffe maintained a qualitative edge over the Red Air Force for most of the war, the increasing numbers and efficacy of the Soviet Air Force were critical the Red Army's efforts at turning back and eventually annihilating the Wehrmacht.

Meanwhile air combat on the Western Front had a much different character. Much of this combat was centered around the strategic bombing campaigns of the RAF and the USAAF. Axis fighter aircraft focused on defending against Allied bombers while Allied fighters' main role was as bomber escorts. The RAF raided German cities at night, and in the darkness conventional single-engined fighters proved inadequate both as escorts and interceptors. The German Messerschmitt Bf 110, a heavy fighter that had proved too slow and unmaneuverable to fight effectively during daytime, and the Junkers Ju 88, a medium bomber, were fitted with the bulky airborne radars of the day and became effective night fighters. The British countered by adapting the Mosquito and the Beaufighter for night operations. The Americans, in contrast, flew daylight bombing raids into Germany. Unescorted B-24 and B-17 bombers, however, proved unable to fend off German interceptors (primarily Bf-109s and FW-190s). With the later arrival of long range fighters, particularly the P-51, Allied fighters were able to escort daylight raids far into Germany and establish control of the skies over Western Europe.

By the time of Operation Overlord, the Allies had gained near complete air superiority over the Western Front. This cleared the way both for intensified strategic bombing of German cities and industries, and for the tactical bombing of battlefield targets. With the Luftwaffe largely cleared from the skies, Allied fighters were increasingly used as attack aircraft, and durable, highly armed fighters such as the P-47 and the Hawker Typhoon proved particularly adept at this role.

Allied fighters, by gaining air superiority over the European battlefield, played a crucial role in the eventual defeat of the Axis, which Reichmarshal Hermann Göring, commander of the German Luftwaffe summed up when he said: "When I saw Mustangs over Berlin, I knew the jig was up."[9]

Pacific theater

Major air combat during the war in the Pacific began with the entry of the Western Allies following Japan's attack against Pearl Harbor. The Imperial Japanese Navy Air Service primarily operating the Mitsubishi A6M Zero, and the Imperial Japanese Army Air Service flying the Nakajima Ki-27 and the Nakajima Ki-43, initially enjoyed great success, as these fighters generally had better range, maneuverability, speed and climb rates than their Allied counterparts.[10][11] Additionally, Japanese pilots had received excellent training and many were combat veterans from Japan's campaigns in China. They quickly gained air superiority over the Allies, who at this stage of the war were often disorganized, under-trained and poorly equipped, and Japanese air power contributed significantly to their successes in the Philippines, Malaysia and Singapore, the Dutch East Indies and Burma.

By mid-1942, the Allies began to regroup and while some Allied aircraft such as the Brewster Buffalo and the P-39 were hopelessly outclassed by fighters like Japan's Zero, others such as the Army's P-40 and the Navy's Wildcat possessed attributes such as superior firepower, ruggedness and dive speed, and the Allies soon developed tactics (such as the Thach weave) to take advantage of these strengths. These changes soon paid dividends, as the Allied ability to deny Japan air superiority was critical to their victories at Coral Sea, Midway, Guadalcanal and New Guinea. In China, the Flying Tigers also used the same tactics with some success, although they were unable to stem the tide of Japanese advances there.

By 1943, the Allies began to gain the upper hand in the Pacific Campaign's air campaigns. Several factors contributed to this shift. First, second-generation Allied fighters such as the Hellcat and the P-38, and later the Corsair, the P-47 and the P-51, began arriving in numbers. These fighters outclassed Japanese fighters in all respects except maneuverability. Other problems with Japan's fighter aircraft also became apparent as the war progressed, such as their lack of armor and light armament, which made them inadequate as bomber interceptors or ground attack planes - roles at which Allied fighters excelled. Additionally, Japan's training program failed to provide enough well-trained pilots to replace losses. In contrast, the Allies improved both the quantity and quality of pilots graduating from their training programs.

By mid-1944, Allied fighters had gained air superiority throughout the theater, which would not be contested again during the war. The extent of Allied quantitative and qualitative superiority by this point in the war was demonstrated during Battle of the Philippine Sea, a lopsided Allied victory where Japanese fliers were downed in such numbers and with such ease that American fighter pilots likened it to a great turkey shoot.

Late in the war, Japan did begin to produce new fighters such as the Nakajima Ki-84 and the Kawanishi N1K to replace the venerable Zero, but these were produced only in small numbers, and in any case by that time Japan lacked trained pilots or sufficient fuel to mount a sustained challenge to Allied fighters. During the closing stages of the war, Japan's fighter arm could not seriously challenge raids over Japan by American B-29s, and was largely relegated to Kamikaze tactics.

Technological innovations

Piston-engine power increased considerably during the war. The Curtiss P-36 Hawk had a 900 hp (670 kW) radial engine but was soon redesigned as the P-40 Warhawk with a 1,100 hp (820 kW) in-line engine. By 1943, the latest P-40N had a 1,300 hp (970 kW) Allison engine. At war's end, the German Focke-Wulf Ta 152 interceptor could achieve 2,050 hp (1,530 kW) with an MW-50 (methanol-water injection) supercharger and the American P-51H Mustang fitted with the Packard V-1650-9 could achieve 2,218 hp (1,654 kW) under war emergency power. The Spitfire Mk I of 1939 was powered by a 1,030 hp (770 kW) Merlin II; its 1945 successor, the Spitfire F. Mk 21, was equipped with the 2,035 hp (1,517 kW) Griffon 61. Likewise, the radial engines favored for many fighters also grew from 1,100 hp (820 kW) to as much as 2090 hp (1560 kW) during the same timeframe.

The first turbojet-powered fighter designs became operational in 1944, and clearly outperformed their piston-engined counterparts. New designs such as the Messerschmitt Me 262 and Gloster Meteor demonstrated the effectiveness of the new propulsion system. Many of these fighters could do over 660 km/h (410 mph) in level flight, and were fast enough in a dive that they started encountering the transonic buffeting experienced near the speed of sound; such turbulence occasionally resulted in a jet breaking up in flight due to the heavy load placed on an aircraft near the so-called "sound barrier". Dive brakes were added to jet fighters late in World War II to minimize these problems and restore control to fighter pilots. Rocket-powered interceptors – most notable the Messerschmitt Me 163 – appeared at around the same time as jet fighters, but proved less effective.

More powerful armament became a priority early in the war, once it became apparent that newer stressed-skin monoplane fighters could not be easily shot down with rifle-caliber machine guns. The Germans' experiences in the Spanish Civil War led them to put 20 mm cannons on their fighters. The British soon followed suit, putting cannons in the wings of their Hurricanes and Spitfires which had previously featured up to twelve machine guns. The Americans, having problems with designing a native cannon design, instead chose to place multiple .50 caliber (12.7 mm) machine guns on their fighters. Armaments continued to increase over the course of the war, with the German Me 262 jet having four 30 mm cannons, capable of downing a heavy bomber with just a few hits. Cannons fired explosive shells, and could blast a hole in an enemy aircraft rather than relying on kinetic energy from a solid bullet striking a critical subsystem (fuel line, hydraulics, control cable, pilot, etc.). A debate existed over the merits of high rate-of-fire machine guns versus slower-firing, but more devastating, cannon.

With the increasing need for close air support on the battlefield, fighters were increasingly fitted with bomb racks and used as fighter-bombers. Some designs, such as the German Fw 190, proved extremely capable in this role – though the designer Kurt Tank had designed it as a pure interceptor. While carrying air-to-surface ordnance such as bombs or rockets beneath the aircraft's wing, its maneuverability is decreased because of lessened lift and increased drag, but once the ordnance is delivered (or jettisoned), the aircraft is again a fully capable fighter aircraft. By their flexible nature, fighter-bombers offer the command staff the freedom to assign a particular air group to air superiority or ground-attack missions, as need requires.

Rapid technology advances in radar, which had been invented shortly before World War II, would permit their installation in some fighters, such as the Boulton Paul Defiant, Bristol Beaufighter, de Havilland Mosquito and later to the Messerschmitt Bf 110, Fairey Fulmar, Grumman F6F Hellcat and the purpose built Northrop P-61 Black Widow, enabling them to locate targets at night. The British used the first radar-equipped night fighters during the Battle of Britain (the Bristol Blenheim) in 1940 and continued to improve it thereafter. The Germans then developed several night-fighter types when they came under night bombardment by RAF Bomber Command. Since the radar of the era was fairly primitive and difficult to use, larger aircraft with dedicated radar operators were usually needed for this role though by 1944 smaller sets suitable for single seat fighters had been introduced. As a part of the Lend Lease agreement between the United States and Great Britain, the British provided all their radar research to the US, who developed the final generations of radar used during the war. German developments generally followed slightly behind both British and American advances but were notable in developing radar warning and detection equipment. The Japanese, in contrast ignored radar until very end of the war and only ever produced very primitive sets, despite their early involvement in radar - the widely used Yagi (goalpost) antenna was named for its Japanese inventor.

Post–World War II period

Several prototype fighter programs begun early in 1945 continued on after the war and led to advanced piston-engine fighters that entered production and operational service in 1946. A typical example is the Lavochkin La-9 'Fritz', which was an evolution of the successful wartime Lavochkin La-7 'Fin'. Working through a series of prototypes, the La-120, La-126 and La-130, the Lavochkin design bureau sought to replace the La-7's wooden airframe with a metal one, as well as fit a laminar-flow wing to improve maneuver performance, and increased armament. The La-9 entered service in August 1946 and was produced until 1948; it also served as the basis for the development of a long-range escort fighter, the La-11 'Fang', of which nearly 1200 were produced 1947–1951. Over the course of the Korean War, however, it became obvious that the day of the piston-engined fighter was coming to a close and that the future would lie with the jet fighter.

This period also witnessed experimentation with jet-assisted piston engine aircraft. La-9 derivatives included examples fitted with two underwing auxiliary pulsejet engines (the La-9RD) and a similarly mounted pair of auxiliary ramjet engines (the La-138); however, neither of these entered service. One which did enter service – with the U.S. Navy in March 1945 – was the Ryan FR-1 Fireball; production was halted with the war's end on VJ-Day, with only 66 having been delivered, and the type was withdrawn from service in 1947. The USAAF had ordered its first 13 mixed turboprop-turbojet-powered pre-production prototypes of the Consolidated Vultee XP-81 fighter, but this program was also canceled by VJ Day, with 80% of the engineering work completed.

Rocket-powered fighters

The first rocket-powered aircraft was the Lippisch Ente, which made a successful maiden flight in March 1928.[12] The only pure rocket aircraft ever to be mass-produced was the Messerschmitt Me 163 in 1944, one of several German World War II projects aimed at developing rocket-powered aircraft.[13] Later variants of the Me 262 (C-1a and C-2b) were also fitted with rocket powerplants, while earlier models were fitted with rocket boosters, but were not mass-produced with these modifications.[14]

The USSR experimented with a rocket-powered interceptor in the years immediately following World War II, the Mikoyan-Gurevich I-270. Only two were built.

In the 1950s, the British developed mixed-power jet designs employing both rocket and jet engines to cover the performance gap that existed in turbojet designs. The rocket was the main engine for delivering the speed and height required for high-speed interception of high-level bombers and the turbojet gave increased fuel economy in other parts of flight, most notably to ensure the aircraft was able to make a powered landing rather than risking an unpredictable gliding return. The Saunders-Roe SR.53 was a successful design and was planned to be developed into production when economics forced curtailment of most British aircraft programs in the late 1950s. Furthermore, rapid advancements in jet engine technology had rendered mixed-power aircraft designs like Saunders-Roe's SR.53 (and its SR.177 maritime variant) obsolete. The American XF-91 Thunderceptor (which was the first U.S. fighter to exceed Mach 1 in level flight) met a similar fate for the same reason, and no hybrid rocket-and-jet-engine fighter design has ever been placed into service. The only operational implementation of mixed propulsion was Rocket-Assisted Take Off (RATO), a system rarely used in fighters.

Jet-powered fighters

It has become common in the aviation community to classify jet fighters by "generations" for historical purposes.[15] There are no official definitions of these generations; rather, they represent the notion that there are stages in the development of fighter design approaches, performance capabilities, and technological evolution.

The timeframes associated with each generation are inexact and are only indicative of the period during which their design philosophies and technology employment enjoyed a prevailing influence on fighter design and development. These timeframes also encompass the peak period of service entry for such aircraft.

First generation subsonic jet fighters (mid-1940s to mid-1950s)

The first generation of jet fighters comprises the initial, subsonic jet fighter designs introduced late in World War II and in the early post-war period. They differed little from their piston-engined counterparts in appearance, and many employed unswept wings. Guns remained the principal armament. The impetus for the development of turbojet-powered aircraft was to obtain a decisive advantage in maximum speed. Top speeds for fighters rose steadily throughout World War II as more powerful piston engines were developed, and had begun approaching the transonic flight regime where the efficiency of piston-driven propellers drops off considerably.

The first jets were developed during World War II and saw combat in the last two years of the war. Messerschmitt developed the first operational jet fighter, the Me 262. It was considerably faster than contemporary piston-driven aircraft, and in the hands of a competent pilot, was quite difficult for Allied pilots to defeat. The design was never deployed in numbers sufficient to stop the Allied air campaign, and a combination of fuel shortages, pilot losses, and technical difficulties with the engines kept the number of sorties low. Nevertheless, the Me 262 indicated the obsolescence of piston-driven aircraft. Spurred by reports of the German jets, Britain's Gloster Meteor entered production soon after and the two entered service around the same time in 1944. Meteors were commonly used to intercept the V-1 "buzz bomb", as they were faster than available piston-engined fighters. By the end of the war almost all work on piston-powered fighters had ended. A few designs combining piston and jet engines for propulsion – such as the Ryan FR Fireball – saw brief use, but by the end of the 1940s virtually all new combat aircraft were jet-powered.

Despite their advantages, the early jet fighters were far from perfect, particularly in the opening years of the generation. Their operational lifespans, especially for their gas turbine powerplants, could be measured primarily in hours; the engines themselves were fragile and bulky, and power could be adjusted only slowly. Many squadrons of piston-engined fighters were retained until the early-to-mid 1950s, even in the air forces of the major powers (though the types retained were the best of the World War II designs). Innovations including ejector seats and all-moving tailplanes were introduced in this period.

The Americans also begin using jet fighters post-war. The Lockheed P-80 Shooting Star (soon re-designated F-80) was less elegant than the swept-wing Me 262, but had a cruise speed (660 km/h (410 mph)]) as high as the combat maximum of many piston-engined fighters. The British designed several new jets, including the iconic de Havilland Vampire which was sold to the air forces of many nations.

The British transferred the technology of the Rolls-Royce Nene jet engine to the Soviets, who soon put it to use in their advanced Mikoyan-Gurevich MiG-15 fighters which were the first to introduce swept wings in combat, an innovation first proposed by German research which allowed flying much closer to the speed of sound than straight-winged designs such as the F-80. Their top speed of 1,075 km/h (668 mph) proved quite a shock to the American F-80 pilots who encountered them over Korea, along with their armament of two 23 mm cannons and a single 37 mm cannon compared to machine guns. Nevertheless, in the first jet-versus-jet dogfight in history, which occurred during the Korean War on 8 November 1950, an F-80 (as the P-80 had been redesignated) intercepted two North Korean MiG-15s near the Yalu River and shot them down.

The Americans responded by rushing their own swept-wing F-86 squadrons to battle against the MiGs which had similar trans-sonic performance. The two aircraft had different strengths, but were similar enough that the superior technology such as a radar ranging gunsight and skills of the veteran United States Air Force pilots allowed them to prevail.

The world's navies also transitioned to jets during this period, despite the need for catapult-launching of the new aircraft. Grumman's F9F Panther was adopted by the U.S. Navy as their primary jet fighter in the Korean War period, and it was one of the first jet fighters to employ an afterburner. The de Havilland Sea Vampire was the Royal Navy's first jet fighter. Radar was used on specialized night fighters such as the F3D Skyknight which also downed MiGs over Korea, and later fitted to the F2H Banshee and swept wing F7U Cutlass and F3H Demon as all-weather / night fighters. Early versions of Infra-red (IR) air-to-air missiles (AAMs) such as the AIM-9 Sidewinder and radar guided missiles such as the AIM-7 Sparrow which would be developed into the 21st century were first introduced on swept wing subsonic Demon and Cutlass naval fighters.

Second generation jet fighters (mid-1950s to early 1960s)

The development of second-generation fighters was shaped by technological breakthroughs, lessons learned from the aerial battles of the Korean War, and a focus on conducting operations in a nuclear warfare environment. Technological advances in aerodynamics, propulsion and aerospace building materials (primarily aluminium alloys) permitted designers to experiment with aeronautical innovations, such as swept wings, delta wings, and area-ruled fuselages. Widespread use of afterburning turbojet engines made these the first production aircraft to break the sound barrier, and the ability to sustain supersonic speeds in level flight became a common capability amongst fighters of this generation.

Fighter designs also took advantage of new electronics technologies that made effective radars small enough to be carried aboard smaller aircraft. Onboard radars permitted detection of enemy aircraft beyond visual range, thereby improving the handoff of targets by longer-ranged ground-based warning and tracking radars. Similarly, advances in guided missile development allowed air-to-air missiles to begin supplementing the gun as the primary offensive weapon for the first time in fighter history. During this period, passive-homing infrared-guided (IR) missiles became commonplace, but early IR missile sensors had poor sensitivity and a very narrow field of view (typically no more than 30°), which limited their effective use to only close-range, tail-chase engagements. Radar-guided (RF) missiles were introduced as well, but early examples proved unreliable. These semi-active radar homing (SARH) missiles could track and intercept an enemy aircraft "painted" by the launching aircraft's onboard radar. Medium- and long-range RF air-to-air missiles promised to open up a new dimension of "beyond-visual-range" (BVR) combat, and much effort was placed in further development of this technology.

The prospect of a potential third world war featuring large mechanized armies and nuclear weapon strikes led to a degree of specialization along two design approaches: interceptors, such as the English Electric Lightning and Mikoyan-Gurevich MiG-21F; and fighter-bombers, such as the Republic F-105 Thunderchief and the Sukhoi Su-7B. Dogfighting, per se, was de-emphasized in both cases. The interceptor was an outgrowth of the vision that guided missiles would completely replace guns and combat would take place at beyond visual ranges. As a result, interceptors were designed with a large missile payload and a powerful radar, sacrificing agility in favor of high speed, altitude ceiling and rate of climb. With a primary air defense role, emphasis was placed on the ability to intercept strategic bombers flying at high altitudes. Specialized point-defense interceptors often had limited range and little, if any, ground-attack capabilities. Fighter-bombers could swing, between air superiority and ground-attack roles, and were often designed for a high-speed, low-altitude dash to deliver their ordnance. Television- and IR-guided air-to-surface missiles were introduced to augment traditional gravity bombs, and some were also equipped to deliver a nuclear bomb.

Third-generation jet fighters (early 1960s to circa 1970)

The third generation witnessed continued maturation of second-generation innovations, but it is most marked by renewed emphases on maneuverability and traditional ground-attack capabilities. Over the course of the 1960s, increasing combat experience with guided missiles demonstrated that combat would devolve into close-in dogfights. Analog avionics began to be introduced, replacing older "steam-gauge" cockpit instrumentation. Enhancements to improve the aerodynamic performance of third-generation fighters included flight control surfaces such as canards, powered slats, and blown flaps. A number of technologies would be tried for Vertical/Short Takeoff and Landing, but thrust vectoring would be successful on the Harrier jump jet.

Growth in air combat capability focused on the introduction of improved air-to-air missiles, radar systems, and other avionics. While guns remained standard equipment (early models of F-4 being a notable exception), air-to-air missiles became the primary weapons for air superiority fighters, which employed more sophisticated radars and medium-range RF AAMs to achieve greater "stand-off" ranges, however, kill probabilities proved unexpectedly low for RF missiles due to poor reliability and improved electronic countermeasures (ECM) for spoofing radar seekers. Infrared-homing AAMs saw their fields of view expand to 45°, which strengthened their tactical usability. Nevertheless, the low dogfight loss-exchange ratios experienced by American fighters in the skies over Vietnam led the U.S. Navy to establish its famous "TOPGUN" fighter weapons school, which provided a graduate-level curriculum to train fleet fighter pilots in advanced Air Combat Maneuvering (ACM) and Dissimilar Air Combat Training (DACT) tactics and techniques.

This era also saw an expansion in ground-attack capabilities, principally in guided missiles, and witnessed the introduction of the first truly effective avionics for enhanced ground attack, including terrain-avoidance systems. Air-to-surface missiles (ASM) equipped with electro-optical (E-O) contrast seekers – such as the initial model of the widely used AGM-65 Maverick – became standard weapons, and laser-guided bombs (LGBs) became widespread in effort to improve precision-attack capabilities. Guidance for such precision-guided munitions (PGM) was provided by externally mounted targeting pods, which were introduced in the mid-1960s.

It also led to the development of new automatic-fire weapons, primarily chain-guns that use an electric engine to drive the mechanism of a cannon; this allowed a single multi-barrel weapon (such as the 20 mm Vulcan) to be carried and provided greater rates of fire and accuracy. Powerplant reliability increased and jet engines became "smokeless" to make it harder to visually sight aircraft at long distances.

Dedicated ground-attack aircraft (like the Grumman A-6 Intruder, SEPECAT Jaguar and LTV A-7 Corsair II) offered longer range, more sophisticated night attack systems or lower cost than supersonic fighters. With variable-geometry wings, the supersonic F-111 introduced the Pratt & Whitney TF30, the first turbofan equipped with afterburner. The ambitious project sought to create a versatile common fighter for many roles and services. It would serve well as an all-weather bomber, but lacked the performance to defeat other fighters. The McDonnell F-4 Phantom was designed around radar and missiles as an all-weather interceptor, but emerged as a versatile strike bomber nimble enough to prevail in air combat, adopted by the U.S. Navy, Air Force and Marine Corps. Despite numerous shortcomings that would be not be fully addressed until newer fighters, the Phantom claimed 280 aerial kills, more than any other U.S. fighter over Vietnam.[16] With range and payload capabilities that rivaled that of World War II bombers such as B-24 Liberator, the Phantom would became a highly successful multirole aircraft.

Fourth generation jet fighters (circa 1970 to mid-1990s)

Fourth-generation fighters continued the trend towards multirole configurations, and were equipped with increasingly sophisticated avionics and weapon systems. Fighter designs were significantly influenced by the Energy-Maneuverability (E-M) theory developed by Colonel John Boyd and mathematician Thomas Christie, based upon Boyd's combat experience in the Korean War and as a fighter tactics instructor during the 1960s. E-M theory emphasized the value of aircraft specific energy maintenance as an advantage in fighter combat. Boyd perceived maneuverability as the primary means of getting "inside" an adversary's decision-making cycle, a process Boyd called the "OODA loop" (for "Observation-Orientation-Decision-Action"). This approach emphasized aircraft designs that were capable of performing "fast transients" – quick changes in speed, altitude, and direction – as opposed to relying chiefly on high speed alone.

E-M characteristics were first applied to the F-15 Eagle, but Boyd and his supporters believed these performance parameters called for a small, lightweight aircraft with a larger, higher-lift wing. The small size would minimize drag and increase the thrust-to-weight ratio, while the larger wing would minimize wing loading; while the reduced wing loading tends to lower top speed and can cut range, it increases payload capacity and the range reduction can be compensated for by increased fuel in the larger wing. The efforts of Boyd's "Fighter Mafia" would result in General Dynamics' (now Lockheed Martin's) F-16 Fighting Falcon.

The F-16's maneuverability was further enhanced by its being designed to be slightly aerodynamically unstable. This technique, called "relaxed static stability" (RSS), was made possible by introduction of the "fly-by-wire" (FBW) flight control system (FLCS), which in turn was enabled by advances in computers and system integration techniques. Analog avionics, required to enable FBW operations, became a fundamental requirement and began to be replaced by digital flight control systems in the latter half of the 1980s. Likewise, Full Authority Digital Engine Controls (FADEC) to electronically manage powerplant performance was introduced with the Pratt & Whitney F100 turbofan. The F-16's sole reliance on electronics and wires to relay flight commands, instead of the usual cables and mechanical linkage controls, earned it the sobriquet of "the electric jet". Electronic FLCS and FADEC quickly became essential components of all subsequent fighter designs.

Other innovative technologies introduced in fourth-generation fighters include pulse-Doppler fire-control radars (providing a "look-down/shoot-down" capability), head-up displays (HUD), "hands on throttle-and-stick" (HOTAS) controls, and multi-function displays (MFD), all of which have become essential equipment. Composite materials in the form of bonded aluminum honeycomb structural elements and graphite epoxy laminate skins began to be incorporated into flight control surfaces and airframe skins to reduce weight. Infrared search-and-track (IRST) sensors became widespread for air-to-ground weapons delivery, and appeared for air-to-air combat as well. "All-aspect" IR AAM became standard air superiority weapons, which permitted engagement of enemy aircraft from any angle (although the field of view remained relatively limited). The first long-range active-radar-homing RF AAM entered service with the AIM-54 Phoenix, which solely equipped the Grumman F-14 Tomcat, one of the few variable-sweep-wing fighter designs to enter production. Even with the tremendous advancement of Air to Air missiles in this era, internal guns were standard equipment.

Another revolution came in the form of a stronger reliance on ease of maintenance, which led to standardisation of parts, reductions in the numbers of access panels and lubrication points, and overall parts reduction in more complicated equipment like the engines. Some early jet fighters required 50 man-hours of work by a ground crew for every hour the aircraft was in the air; later models substantially reduced this to allow faster turn-around times and more sorties in a day. Some modern military aircraft only require 10 man-hours of work per hour of flight time, and others are even more efficient.

Aerodynamic innovations included variable-camber wings and exploitation of the vortex lift effect to achieve higher angles of attack through the addition of leading-edge extension devices such as strakes.

Unlike interceptors of the previous eras, most fourth-generation air-superiority fighters were designed to be agile dogfighters (although the Mikoyan MiG-31 and Panavia Tornado ADV are notable exceptions). The continually rising cost of fighters, however, continued to emphasize the value of multirole fighters. The need for both types of fighters led to the "high/low mix" concept which envisioned a high-capability and high-cost core of dedicated air-superiority fighters (like the F-15 and Su-27) supplemented by a larger contingent of lower-cost multi-role fighters (such as the F-16 and MiG-29).

Most fourth-generation fighter-bombers, such as the Boeing F/A-18 Hornet and Dassault Mirage 2000, are true multirole warplanes, designed as such from the start. This was facilitated by multimode avionics which could switch seamlessly between air and ground modes. The earlier approaches of adding on strike capabilities or designing separate models specialized for different roles generally became passé (with the Panavia Tornado being an exception in this regard). Attack roles were generally assigned to dedicated ground-attack aircraft such as the Sukhoi Su-24 and the A-10 Thunderbolt II.

A typical US Air Force fighter wing of the era might contain a mix of: one air superiority squadron (F-15C), one strike fighter squadron (F-15E), and two multirole fighter squadrons (F-16C).[17]

Perhaps the most novel technology to be introduced for combat aircraft was "stealth", which involves the use of special "low-observable" (L-O) materials and design techniques to reduce the susceptibility of an aircraft to detection by the enemy's sensor systems, particularly radars. The first stealth aircraft to be introduced were the Lockheed F-117 Nighthawk attack aircraft (introduced in 1983) and the Northrop Grumman B-2 Spirit bomber (which first flew in 1989). Although no stealthy fighters per se appeared amongst the fourth generation, some radar-absorbent coatings and other L-O treatments developed for these programs are reported to have been subsequently applied to fourth-generation fighters.

4.5th generation jet fighters (1990s to the present)

The end of the Cold War in 1991 led many governments to significantly decrease military spending as a "peace dividend". Air force inventories were cut, and research and development programs intended to produce what was then anticipated to be "fifth-generation" fighters took serious hits; many programs were canceled during the first half of the 1990s, and those which survived were "stretched out". While the practice of slowing the pace of development reduces annual investment expenses, it comes at the penalty of increased overall program and unit costs over the long-term. In this instance, however, it also permitted designers to make use of the tremendous achievements being made in the fields of computers, avionics and other flight electronics, which had become possible largely due to the advances made in microchip and semiconductor technologies in the 1980s and 1990s. This opportunity enabled designers to develop fourth-generation designs – or redesigns – with significantly enhanced capabilities. These improved designs have become known as "Generation 4.5" fighters, recognizing their intermediate nature between the 4th and 5th generations, and their contribution in furthering development of individual fifth-generation technologies.

The primary characteristics of this sub-generation are the application of advanced digital avionics and aerospace materials, modest signature reduction (primarily RF "stealth"), and highly integrated systems and weapons. These fighters have been designed to operate in a "network-centric" battlefield environment and are principally multirole aircraft. Key weapons technologies introduced include beyond-visual-range (BVR) AAMs; Global Positioning System (GPS)-guided weapons, solid-state phased-array radars; helmet-mounted sights; and improved secure, jamming-resistant datalinks. Thrust vectoring to further improve transient maneuvering capabilities has also been adopted by many 4.5th generation fighters, and uprated powerplants have enabled some designs to achieve a degree of "supercruise" ability. Stealth characteristics are focused primarily on frontal-aspect radar cross section (RCS) signature-reduction techniques including radar-absorbent materials (RAM), L-O coatings and limited shaping techniques.

"Half-generation" designs are either based on existing airframes or are based on new airframes following similar design theory as previous iterations; however, these modifications have introduced the structural use of composite materials to reduce weight, greater fuel fractions to increase range, and signature reduction treatments to achieve lower RCS compared to their predecessors. Prime examples of such aircraft, which are based on new airframe designs making extensive use of carbon-fibre composites, include the Eurofighter Typhoon, Dassault Rafale, and Saab JAS 39 Gripen.

Apart from these fighter jets, most of the 4.5 generation aircraft are actually modified variants of existing airframes from the earlier fourth generation fighter jets. Such fighter jets are generally heavier and examples include the Boeing F/A-18E/F Super Hornet which is an evolution of the 1970s F/A-18 Hornet design, the F-15E Strike Eagle which is a ground-attack/multi-role variant of the Cold War-era F-15 Eagle, the Sukhoi Su-30MKI and the Sukhoi Su-30MKK which are further developments of the Su-30 fighter and the MiG-29M, MiG-29K and MiG-35, upgraded versions of the 1980s MiG-29. The Su-30MKI and MiG-35 use thrust vectoring engine nozzles to enhance maneuvering. The Chengdu J-10B incorporates an Active Electronically Scanned Array (AESA) radar for reduced cross section and DSI and IRST and vertical stabilisers fitted under the wings. Planned upgrades to the JF-17 Thunder are expected to also incorporate an AESA radar and reduced cross section measures. Most 4.5 generation aircraft are being retrofitted with AESA radars and other state-of-the art avionics such as electronic counter-measure systems and forward looking infrared.

4.5 generation fighters first entered service in the early 1990s, and most of them are still being produced and evolved. It is quite possible that they may continue in production alongside fifth-generation fighters due to the expense of developing the advanced level of stealth technology needed to achieve aircraft designs featuring very low observables (VLO), which is one of the defining features of fifth-generation fighters. Of the 4.5th generation designs, only the Strike Eagle, Super Hornet, Typhoon, Gripen and Rafale have seen combat action.

The United States government defines 4.5 generation fighter aircraft as those that "(1) have advanced capabilities, including— (A) AESA radar; (B) high capacity data-link; and (C) enhanced avionics; and (2) have the ability to deploy current and reasonably foreseeable advanced armaments."[18][19]

Fifth generation jet fighters (2005 to the present)

The fifth generation was ushered in by the Lockheed Martin/Boeing F-22 Raptor in late 2005. Currently the cutting edge of fighter design, fifth-generation fighters are characterized by being designed from the start to operate in a network-centric combat environment, and to feature extremely low, all-aspect, multi-spectral signatures employing advanced materials and shaping techniques. They have multifunction AESA radars with high-bandwidth, low-probability of intercept (LPI) data transmission capabilities. The Infra-red search and track sensors incorporated for air-to-air combat as well as for air-to-ground weapons delivery in the 4.5th generation fighters are now fused in with other sensors for Situational Awareness IRST or SAIRST, which constantly tracks all targets of interest around the aircraft so the pilot need not guess when he glances. These sensors, along with advanced avionics, glass cockpits, helmet-mounted sights (not currently on F-22), and improved secure, jamming-resistant LPI datalinks are highly integrated to provide multi-platform, multi-sensor data fusion for vastly improved situational awareness while easing the pilot's workload.[20] Avionics suites rely on extensive use of very high-speed integrated circuit (VHSIC) technology, common modules, and high-speed data buses. Overall, the integration of all these elements is claimed to provide fifth-generation fighters with a "first-look, first-shot, first-kill capability".

The AESA radar offers unique capabilities for fighters (and it is also quickly becoming essential for Generation 4.5 aircraft designs, as well as being retrofitted onto some fourth-generation aircraft). In addition to its high resistance to ECM and LPI features, it enables the fighter to function as a sort of "mini-AWACS," providing high-gain electronic support measures (ESM) and electronic warfare (EW) jamming functions.

Other technologies common to this latest generation of fighters includes integrated electronic warfare system (INEWS) technology, integrated communications, navigation, and identification (CNI) avionics technology, centralized "vehicle health monitoring" systems for ease of maintenance, fiber optics data transmission, stealth technology and even hovering capabilities.

Maneuver performance remains important and is enhanced by thrust-vectoring, which also helps reduce takeoff and landing distances. Supercruise may or may not be featured; it permits flight at supersonic speeds without the use of the afterburner – a device that significantly increases IR signature when used in full military power.

A key attribute of fifth-generation fighters is very-low-observables stealth. Great care has been taken in designing its layout and internal structure to minimize RCS over a broad bandwidth of detection and tracking radar frequencies; furthermore, to maintain its VLO signature during combat operations, primary weapons are carried in internal weapon bays that are only briefly opened to permit weapon launch. Furthermore, stealth technology has advanced to the point where it can be employed without a tradeoff with aerodynamics performance, in contrast to previous stealth efforts. Some attention has also been paid to reducing IR signatures, especially on the F-22. Detailed information on these signature-reduction techniques is classified, but in general includes special shaping approaches, thermoset and thermoplastic materials, extensive structural use of advanced composites, conformal sensors, heat-resistant coatings, low-observable wire meshes to cover intake and cooling vents, heat ablating tiles on the exhaust troughs (seen on the Northrop YF-23), and coating internal and external metal areas with radar-absorbent materials and paint (RAM/RAP).

Such aircraft are sophisticated and expensive. The U.S. Air Force had originally planned to acquire 650 F-22s, but now only 187 will be built. As a result, its unit flyaway cost (FAC) is around US$150 million. To spread the development costs – and production base – more broadly, the Joint Strike Fighter (JSF) program enrolls eight other countries as cost- and risk-sharing partners. Altogether, the nine partner nations anticipate procuring over 3,000 Lockheed Martin F-35 Lightning II fighters at an anticipated average FAC of $80–85 million. The F-35, however, is designed to be a family of three aircraft, a conventional take-off and landing (CTOL) fighter, a short take-off and vertical landing (STOVL) fighter, and a Catapult Assisted Take Off But Arrested Recovery (CATOBAR) fighter, each of which has a different unit price and slightly varying specifications in terms of fuel capacity (and therefore range), size and payload.

Other countries have initiated fifth-generation fighter development projects, with Russia's Sukhoi PAK FA and Mikoyan LMFS. In October 2007, Russia and India signed an agreement for joint participation in a Fifth-Generation Fighter Aircraft Program (FGFA), which will give India responsibility for development of a two-seat model of the PAK-FA. In December 2010, it was discovered that China is developing the 5th generation fighter Chengdu J-20.[21] The J-20 took its maiden flight in January 2011 and is planned to be deployed in 2017–19 time frame.[22] India is also developing its own indigenous fifth generation aircraft named Medium Combat Aircraft. Japan is exploring its technical feasibility to produce fifth-generation fighters.

Sixth generation jet fighters

A sixth generation jet fighter is a conceptual airplane expected to enter service in the United States Air Force and United States Navy in 2025–30 timeframe.[23][24] With the Chinese Chengdu J-20 and the Russian-Indian Sukhoi PAK FA under development, the need for of a sixth generation fighter may be urgent for the US military.[25] The USAF seeks new fighter for the 2030–50 period named the "Next Generation Tactical Aircraft"/"Next Gen TACAIR"[26][27][28] The US Navy looks to replace its F/A-18E/F Super Hornets beginning in 2025 with the Next Generation Air Dominance air superiority fighter.[29][30]

See also

References

  1. ^ "Fighter - Definition and More from the Free Merriam Webster Dictionary.". Merriam Webster Dictionary. Encyclopædia Britannica. 22 September 2011. http://www.merriam-webster.com/dictionary/fighter. 
  2. ^ Andreas Parsch (22 September 2011). "Non-Standard DOD Aircraft Designations". http://www.designation-systems.net/usmilav/nonstandard-mds.html. 
  3. ^ "Mitchell’s Theory". Air & Space Power Course. College of Aerospace Doctrine, Research and Education. 22 September 2011. http://www.iwar.org.uk/military/resources/aspc/text/theory/mitch.htm. 
  4. ^ Stephen Trimble (22 September 2011). "XCLUSIVE: US Air Force combat fleet's true operational costs revealed". Stephen Trimble's The Dew Line.. Flight Global. http://www.flightglobal.com/blogs/the-dewline/2011/08/exclusive-us-air-force-combat.html. 
  5. ^ Lee, Arthur Gould. No Parachute. London: Jarrolds, 1968. ISBN 0-09-086590-1.
  6. ^ Eric Lawson, Jane Lawson (2002). "The First Air Campaign: August 1914– November 1918". Da Capo Press. p.123. ISBN 0306812134
  7. ^ Harry Furniss (2000). "Memoirs one: the flying game". Trafford Publishing. ISBN 1552125130
  8. ^ John Buckley (1998). "Air power in the age of total war". Taylor & Francis. p.43. ISBN 1857285891
  9. ^ Sherman, Steven. "Aces of the Eighth Air Force in World War Two." acepilots.com, June 1999. Retrieved: 7 August 2011.
  10. ^ Eden p. 370
  11. ^ Ireland & Grove p. 182
  12. ^ Darling, David. "Lippisch Ente", The Internet Encyclopedia of Science – Experimental Aircraft. Accessed 5 October 2008.
  13. ^ "Me-163 Komet". Planes of Fame Air Museum. Accessed 5 October 2008.
  14. ^ Munson, Kenneth. Fighters and Bombers of World War II. New York City: Peerage Books, 1983, p. 159. ISBN 0-907408-37-0.
  15. ^ For one representation, see: Yoon, Joe. "Fighter Generations". Aerospaceweb.org. Retrieved 5 October 2008.
  16. ^ Where Have All the Phantoms Gone? Ralph Wetterhahn Air & Space Magazine, 1 January 2009
  17. ^ Duane Robert Worley (2006). Shaping U.S. military forces: revolution or relevance in a post–Cold War world. Greenwood Publishing Group. p. 125. ISBN 9780275990312. http://books.google.com/books?id=w1ME5BWMnmgC&lpg=PA120&dq=fighter%20%22superiority%20fighter%22%20multi-role%20attack%20bomber&pg=PA125#v=onepage&q&f=false. Retrieved 20 January 2011. 
  18. ^ CRS RL33543, Tactical Aircraft Modernization: Issues for Congress 9 July 2009
  19. ^ H.R.2647 – National Defense Authorization Act for Fiscal Year 2010
  20. ^ LockMart's 5TH Generation Fighters
  21. ^ Watts, Jonathan; Borger, Julian (5 January 2011). "Chinese jet fighter 'sighting' raises fears over region's military power balance". The Guardian (London). http://www.guardian.co.uk/world/2011/jan/05/chinese-j20-stealth-fighter-image-military-power. 
  22. ^ Chinese J-20 Logs First Flight – AviationWeek.com
  23. ^ Next Generation Tactical Aircraft (Next Gen TACAIR) CRFI posted, Lucky Bogey, 12 November 2010, http://luckybogey.wordpress.com/2010/11/22/next-generation-tactical-aircraft-next-gen-tacair-crfi-posted/ .
  24. ^ The Sixth Generation Fighter, Airforce Magazine, 2009-10, http://www.airforce-magazine.com/MagazineArchive/Pages/2009/October%202009/1009fighter.aspx .
  25. ^ Hecht, Jeff. "Has China's new jet launched a stealth arms race?" New Scientist, 21 January 2011.
  26. ^ "USAF wants F-22 Replacement by 2030", IDRW, Reuters, http://idrw.org/?p=1201 .
  27. ^ USAF: Next Generation Tactical Aircraft (Next Gen TACAIR) Materiel and Technology Concepts Search, USA: FBO, https://www.fbo.gov/index?s=opportunity&mode=form&id=782e30c9c983f85e7952c2adc426b189&tab=core&_cview=1 .
  28. ^ Air Force Kicks Off Search for 6th-Gen Fighter, Defense Tech, 5 November 2010, http://defensetech.org/2010/11/05/air-force-kicks-off-search-for-6th-gen-fighter/ .
  29. ^ Trimble, Stephen (2010-5), "Boeing plots return to next-generation fighter market", The Dewline, Flight Global, http://www.flightglobal.com/blogs/the-dewline/2010/05/boeing-plots-return-to-next-ge.html .
  30. ^ Boeing displays manned F/A-XX concept jet, Flight Global, 9 July 2009, http://www.flightglobal.com/articles/2009/07/09/329472/boeing-displays-manned-fa-xx-concept-jet.html .
Bibliography

External links